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Abstract

Wavelet analysis for filtering and system identification

has been used to improve the estimation of

aeroservoelastic stability margins. The conservatism of
the robust stability margins is reduced with parametric

and nonparametric time-frequency analysis of flight data

in the model validation process. Nonparametric wavelet

processing of data is used to reduce the effects of external

disturbances and unmodeled dynamics. Parametric

estimates of modal stability are also extracted using the

wavelet transform. Computation of robust stability

margins for stability boundary prediction depends on

uncertainty descriptions derived from the data for model

validation. The F-18 High Alpha Research Vehicle

aeroservoelastic flight test data demonstrates improved

robust stability prediction by extension of the stability

boundary beyond the flight regime. Guidelines and

computation times are presented to show the efficiency

and practical aspects of these procedures for on-line
implementation. Feasibility of the method is shown for

processing flight data from time-varying nonstationary

test points.
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Introduction

frequency and damping parameters are estimated

directly from the data without intermediate model

identification schemes. In these schemes, parameter

range approximations are necessary to discriminate

frequency and damping.

A recent method (7) uses a wavelet transform (WT) on

free-response data to directly supply information on

time-dependent modal decay rate and phase variation.

Without any approximation of parameter range, natural

frequencies and damping ratios are extracted from the

response. Damping and frequency trends are useful for

noting changes in system dynamics as a function of flight

condition, thereby helping to reduce conservatism in real

parameter variations of the uncertainty model.

Model validation is a critical procedure in the

computation of robust stability margins. The margins are

adversely affected by poor characterizations of the

uncertainty size and structure, which are determined by

perturbation magnitude, location in the system, and type
(real or complex). Wavelet processing of ASE flight test

data improves the robust stability margin estimate by

helping to reduce the conservatism in the uncertainty

description pertaining to complex (nonparametic) and

real (parametric) perturbations.

Envelope expansion of new or modified aircraft often

requires structural stability testing to verify safety

margins to prevent against aeroservoelastic (ASE)

instability. In-flight testing allows determination of

aeroelastic or ASE effects as a function of flight

parameters. Flight data are acquired for stability

estimation and system identification to compare with

analytic predictions. Any anomalies are regarded with

care for safety of flight.

Excitation systems are often essential to establish

stability trends from noisy measurements because
atmospheric turbulence is generally insufficient to

provide adequate levels of excitation. 0) These systems

often generate deterministic, nonstationary input signals.

When applied as filter banks for data enhancement,

wavelet signal processing has shown promise for system

identification in such environments. Improwement jn

flight data analysis is achieved by-ciiscriminating areas of

low signal-to-noise ratio, unmodeled dynamics, and

external disturbances. Removing aspects of signal

responses detrimental to linear identification methods

may improve stability tracking with time-frequency

filtering.(2-4)

Wavelet transforms have also been applied to

parametric identification of time-varying multiple-

degree-of-freedom systems by estimating the impulse
response using correlation methods._5, 6) Modal

This paper discusses augmenting wavelet filtering with

wavelet-based modal parameter extraction to produce

robust stability margins with reduced-norm uncertainty

sets of complex (nonparametric) and real (parametric)
perturbations. The decrease in conservatism results in a

more practical and valuable robust stability margin than

stability margins without reduced-norm uncertainty sets.

Transfer functions and modal parameter estimates
derived from time-frequency Morlet wavelets are used to

estimate state-space ASE models from the F-18 High

Alpha Research Vehicle (HARV) (8) (fig. I) flight data.

These models are used in a robust stability boundary

prediction method based on the structured singular

value, p.._9) On-line implementation issues are presented

to demonstrate feasibility and efficiency in a real-time
test environment.

The F-! 8 High Alpha Research Vehicle and
Aeroservoelastic Flight Test

The F-18 HARV aircraft is a two-seat fighter that was

modified to include thrust-vectoring paddles on the

engines and a research flight control system to ensure
stability at high-angle-of-attack flight conditions. (10)

The flight system also included an excitation signal

generator, the onboard excitation system (OBES), for

aerodynamic parameter identification, closed-loop
stability monitoring, and ASE excitation. (11) For ASE
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stability monitoring, the OBES was configured to sum

programmed digital signals to the control system
actuator commands for structural excitation of the

primary modes (table 1). Inputs from 5 to 20 Hz were

added to the control surface commands at angles of
attack from 5° to 70 ° at 1 g.

EC96-43595-2

Figure I. F-18 High Alpha Research Vehicle.

Table 1. F- 18 HARV calculated elastic frequencies.

Antisymmetric Mode co, Hz

Fuselage first bending 7. I

Wing first bending 8.8

Wing first torsion 12.0

Stabilizer first bending 13.6

Wing fore-aft 15.2

Fin first bending 15.7

Fuselage first torsion 19.1

Fuselage second bending 21.4

Exhaust vane rotation 22.1

Inboard flap rotation 23.2

Fore-fuselage torsion 24.2

Analytical predictions indicated poor ASE stability

robustness in the lateral-directional feedback loops.

Structured singular values of complementary sensitivity

near the first antisymmetric wing bending and wing
torsion modes (approximately 9 Hz and 12 Hz,

respectively) approached 0 dB, and the wing fore-aft

mode at approximately 15Hz was at -6 dB. Flight
envelope limits were at altitudes of 15,000-35,0000 ft

and a maximum speed of Mach 0.7. Worst-case flight

conditions from the analysis were at speeds less than

Mach 0.3, altitudes higher than 30,000 ft, and angles of

attack greater than 50 °. This paper addresses robust

stability at a representative worst-case flight condition of

50 ° angle of attack at Mach 0.3 and an altitude of
30,000 ft.

Time-Frequency System Identification

A desirable feature of signal analysis is adaptation to
both transient and stationary characteristics, which

implies both time- and frequency-domain resolution

criteria subject to the uncertainty principle. These
competing requirements demand a method that is tunable

according to the local signal dynamics. For general types

of input excitation, constant time-frequency resolution
analysis(2, 3, 12) may not be applicable.

Redundant, continuous wavelet transform methods

give arbitrarily good resolutions but are cumbersome (13)

and often slow (14) for reconstruction and filtering.

Alternatively, nonredundant (compact and orthonormal)
wavelet transforms are fast and accurate but are limited in

frequency resolution even with wavelet packets. Good

frequency resolution is obtained with classical harmonic
wavelets, (15) but time resolution is sacrificed. The

objective of adjusting the competing requirements of
time and frequency resolution with fast, accurate

processing is accomplished with a combination of

compact orthogonal and harmonic wavelet properties in
the compact harmonic wavelets. ( 13, 16)

Nonparametric Estimation: Wavelet Filtering

The muhivoice wavelet transform was introduced to

exploit multiresolution analysis using compact harmonic
wavelets.(13, 17) "Multivoice," or "multiscale," refers to

redundant representations of signals on multiple
frequency bands. (18) Nonorthonormal Morlet wavelets

are approximated with (harmonic-like) discretizations on

multiple wavelet scales. These wavelets form a

nonorthogonal redundant basis for the signal space that

does not admit a multiresolution analysis. The discrete

wavelet transform (DWT) needs to be derived from the

wavelet basis to get a multiresolution analysis of the
sampled continuous Morlet transform. (17)

The DWT is implemented as a filter bank covering a

predefined range of frequencies with corresponding

number of frequency bands (voices) for each octave.

Interpolation, or scaling, filters are introduced to define

how the scales relate to each other in a dyadic fashion for

the multiscale representation. These scaling filters are
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compact (finite impulse response) for fast and accurate

reconstruction. Therefore, multivoice transforms provide

practical, fast, and flexible means for analysis and

filtering of nonstationary data and enable tunable

frequency resolution and time localization.

The wavelet transform of signal x(t) over the

time-scale (x, a) plane is represented as

Wg('C,a)= _aafX(t)g*(_)dt,

where scale parameter a is proportional to the duration

and inversely proportional to the peak frequency 030 of

the complex Morlet wavelet

t 2

1 --2 i(Oot
g(t) = _e e

42_

The spectrum of a dilated and translated Morlet
wavelet

-(at0- COo)2 ic0_
Ga,_(03) = e e (l)

030
reaches a maximum value at a =--. Frequency

03
discretization is logarithmic in the frequency range of

interest by setting the sequence of scale values to

a i = aoY i, where (logy, 3'> 1) is the constant

frequency step. Integration step log Yi is chosen to be

small enough that the frequency bandwidth of the scaled

wavelets gi(t) = _iig will appreciably overlap.

A time-scale representation of data is often called a

scalogram, (]9) which is actually the power spectral

density ]Wg('c, a)l 2 of the signal over the (% a) plane.

Figure 2 shows example scalograms of a 5-20 Hz

F- 18 HARV aileron chirp (linear frequency sweep) input

command (fig. 2(a)) and lateral acceleration feedback

response at 50 ° angle of attack (fig. 2(b)) (note the log

frequency scale).

Time-frequency masking of input and output is

performed along the sweep. Figure 2 shows this filtering

procedure on the input (fig. 2(a)) and output (fig. 2(c)) as

processed scalograms. Onboard excitation system inputs

are relatively clean because the inputs are digitally

generated by the flight system, so time-frequency

filtering of the output will be more significant in this case.

Figure 3 shows the effect of filtering on the responses.

Note that effective signal reconstruction from the

processed scalograms is accomplished from the real

wavelet basis.
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(c) Cleaned lateral acceleration response.

Figure 2. Scalogram contours
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Parametric Modal E_timation: Morlet Wavelet
Transform

Modal parameters can be estimated with wavelets by

analysis of the system impulse response(7, 20)

(appendix). The DWT of a signal using the complex

Morlet wavelet is a complex-valued matrix whose

modulus and phase are related to impulse response

parameters. In the current application, this procedure is

applied at every time point assuming at each instant that

the response is a sum of multiple-degree-of-freedom

impulse responses.

Figure 4 shows an example of response frequency

estimation using the linear phase variation of the WT for

the filtered lateral acceleration response from aileron

input command at 50 ° angle of attack (using data shown

in figure 3). The raw estimate shown at the top of figure 4

corresponds to the derivative of the phase variation of the

WT between 20 and 27 sec. Hence, this estimate is of

instantaneous frequency from equation 3. Data spikes are

removed by limiting values of the second derivative
below some threshold. The refined estimate shown at the

bottom of figure 4 is computed from the data shown at the

top of figure 4 with spikes removed, and these

computations are used to derive an approximate response

frequency of 11.8 (+_0.3) Hz over the respective time

span. Wavelet modulus decay is similarly used to derive

decay rate.

Figure 5 shows some results of wavelet-based modal

estimation using the data from the wavelet-filtered results

of figure 3. The upper left of figure 5 shows the mean

value of the instantaneous frequency ¢(t), or estimated

cod, as a function of the complex Morlet wavelet
frequency coo' The upper fight of figure 5 shows plots of

the estimated decay rate, or frequency _con' also as a

function of coo' From these two parameters are derived

the modal natural frequency con and modal damping

ratio _ as functions of coo (shown in the lower left and
right plots).
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Figure 4. Instantaneous frequency estimation:

estimate (top) and refined estimate (bottom).
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Figure 5. Modal frequency and damping estimates:

damped frequency as a function of wavelet frequency

(upper left), decay rate as a function of wavelet frequency

(upper right), natural frequency as a function of wavelet
frequency (lower left), and damping ratio as a function of

wavelet frequency (lower fight).

Finally, the bank of Morlet wavelets used for natural

frequency and damping ratio estimation are tagged for

starting time and duration to get the modal estimates as

functions of time. Figure 6 shows time-dependent modal

parameter estimates. In this case, modal frequency is

observed to be essentially the tracked input frequency
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because the cleaned output signal shown at the bottom of

figure 3 is being used, and this response tends to track the

input frequency. From the scalogram shown at the

bottom of figure 2, the response lacks definition between

20 and 25 sec and between 32 and 34 sec. These gaps also

correspond to the lower output signal levels at these time

intervals shown at the bottom of figure 3. Lack of

observability makes the modal damping results shown at

the right in figure 6 questionable in these particular
intervals.
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Figure 6. Response natural frequency (left) and damping
ratio (right) estimates.

Scalogram contours shown in figure 2 suggest the

wavelet coefficients as a measure of data quality and

modal definition. In figure 7, the wavelet coefficients are

represented for each modal frequency and damping ratio

using the same data from the wavelet-filtered results

shown in figure 3. Lower magnitude coefficients indicate

tess observable modal dynamics from the data. Views

along each axis in figure 8 show that the coefficients from

modal frequency estimates may be used to distinguish

more dominant from less observable dynamics. This

criterion can be exploited to extract the corresponding

modal damping values. (20)

An important point is that the Morlet wavelets are

being used to estimate the modal parameters; therefore,

an implicit filtering process is being performed

independent of the explicit procedure previously

described. The wavelet basis representation of the signal

is itself a noise-free subspace of the signal function

space, and the modal parameters are derived from this

signal subspace.
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Figure 7. Wavelet coefficient magnitudes as functions of

estimated modal frequency and damping estimates.
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The Structured Singular Value Method

A method to compute stability margins of ASE

systems has been formulated based on robust stability

theory. (21) This method uses a set Of structured 01_erators

A, referred to as uncertainty, to describe errors and

unmodeled dynamics in an analytical model. The

structured singular value, g, is used to compute a

stability margin for this model that is robust, or
worst-case, to the uncertainty operators. (22)

The I.t framework represents systems as operators
with interconnections known as linear fractional

I



transformations. This paper uses the notation F(P, A) to

represent a feedback interconnection of the plant P and

uncertainty operator A. Aeroservoelastic systems may

have errors affecting different dynamic subsystems, so
the A is structured such that the feedback

interconnections ensure each subsystem is affected by
the proper component of A.

Flight data can be incorporated into the /a method by

formulating an uncertainty description that accounts for
observed variations and errors. (23) A model validation

analysis is performed on the plant model to ensure the

range of dynamics admitted by the uncertainty is
sufficient to cover the range of dynamics observed with

the flight data. Thus, a robust stability margin is

computed that directly accounts for flight data.

An ASE stability margin, F, is determined by

computing I-t with respect to an uncertainty description,

8_, that admits variations in dynamic pressure, ?7, and an

uncertainty description, A, that describes modeling
errors. (24) This margin relates the largest change in

dynamic pressure that may be considered while

guaranteeing the plant model is robustly stable to all
errors described by A.

The Structured Singular Value Method with
Wavelet Processing

The p method can be coupled with the wavelet

filtering processes of parametric and nonparametric

estimation discussed previously. This coupling is

achieved by introducing several time-frequency

operations based on wavelet filtering into the basic
process. Figure 9 shows the general information

flowchart for the la method with wavelet filtering.

o.,.r i I

÷x,t, l
I _ EA

x(T,O)l

I Filter
X(_, 0)) estimation

(t)
^

FFT ___ Model [validation [

Update Iuncertainty model

Update model [parameters

e(_,_) F

980158

Figure 9. Flowchart of la method combined with wavelet

filtering for on-line wavelet-la method of robust stability
margin analysis of ASE dynamics.

Wavelet transform operations are introduced to

process the time-domain data, x(t), before a

frequency-domain representation, ,¢((to), is computed.

These operations map the time-domain data into a

time-frequency-doniain scalogram through a wavelet

transform and then map a scalogram back into the time

domain through an inverse wavelet transform. A

time-frequency filtering process operates between the
WT and inverse WT to remove unwanted features from

the scalogram before the inverse WT computes a

time-domain signal, ._(t).

A modal parameter estimation operation is introduced

using the wavelet algorithm. Properties of the system

dynamics are derived from the filtered scalogram. The

elements of a nominal plant model, P, are updated with

these parameter estimates, and a new plant model, P, is

used to represent the ASE dynamics.

The final operations of the /.t method are traditional

robust stability operations that operate on
frequency-domain data. The effect of the wavelet

filtering is to use the filtered versions of the data and plant

model for the modal validation. Thus, a new uncertainty

operator, 2x, is associated with the parameter updated
plant, _, to account for errors observed from the filtered

data, _(t). A robust stability margin, F, is computed that

describes the largest change in dynamic pressure for
which P is robustly stable to the errors ,_.

The Structured Singular Value Method with Paramet¢r
Estimation

Figure 9 shows an implementation of the [a method

with modal parameter estimation. The filter operation for

this implementation is ignored, so the wavelet map
,¢((_:, to) is equivalent to the original map X(_, co).

The wavelet-based method for parametric estimation is

used to analyze the wavelet map ,¢((z, _) of the flight

data. This method estimates modal parameters to

describe the system dynamics that generated the flight

data. A plant model, /51, is computed by updating

elements of the nominal plant model, P0, with the modal

parameter estimates. Only a limited subset of dynamics

will be observable in the data, so only a correspondingly
limited subset of the plant modal parameters will be
updated.

An uncertainty description, Ai, is generated for the

plant with updated modal parameters, _bt, using the

model validation procedure. This procedure essentially
uses the original flight data measurements because the

WT and inverse WT operations will cancel each other

except for numerical inaccuracies. Thus, x(t)

approximately equals 3:(t), and an uncertainty

description is computed for the updated plant that

__7_



accounts for all variations and anomalies in the recorded

data.

The magnitude of uncertainty associated with the

updated plant should be less than (or equal to) the
uncertainty magnitude associated with the nominal plant.

This decrease in uncertainty results from the ability of

the updated plant to account for bias in the nominal plant
estimates. Hence, the uncertainty associated with the

updated parameter is less than the uncertainty associated

with the nominal parameter. Thus, ll_,,ll_ _ ii,_oll .

The conservatism in robust stability margins computed

by the I.t method arises from the excessive uncertainty
needed to account for errors in a model. A decrease in

uncertainty from model updating with the parameter

estimation process should decrease this conservatism.

The Structured Singular Value Method with Wavelet

Filtering and Parameter Estimation

Another implementation of the _ method with modal

parameter estimation results from including a nontrivial

filtering operation (fig. 9). The wavelet filtering

operation, which is a type of nonparametric estimation, is

used to generate scalograms to represent desired features
of input and output data in the time-frequency domain.

The filtered scalogram, _(x, co), may be arbitrarily

different than the original scalogram, X(z, co),

depending on the energy of the signal components that do
not correlate to desired features.

The filtered wavelet map is input to the parametric

estimation process. Resulting modal parameter estimates

represent the dynamics of the system model that generate

the desired features dominant in the filtered maps. The

elements of the nominal plant model, PO, are replaced

with the modal parameter estimates to generate an
updated plant model, P2.

The filtered wavelet map is also used to generate an
uncertainty description for the updated plant P2. A

time-domain signal, ._(t), which represents the filtered

measurement data, is computed by an inverse wavelet

transform on the filtered scalogram. A frequency-domain

representation of this filtered signal is computed from a

Fourier transform and is used by the model validation
process. The resulting uncertainty, /_2, describes the

variations between the updated plant P2 and the filtered
data.

The uncertainty description size (in norm) associated

with P2 should be reduced from that used to validate the

unfiltered data when used for validating the filtered data.

The filtering process should remove nonlinearities and

harmonics along with noise that causes aliasing and
errors in measured transfer functions. This removal of

errors may decrease the variance in modal parameter

estimates so that an updated model can be generated with

less uncertainty. The filtered data generate parameters

that are less scattered than the parameters generated from

the unfiltered data, thereby allowing the uncertainty ball

to be smaller than for the unfiltered case, so

11 211 --I1 ',11 IIA011oo•Therefore, the conservatism in
robust stability margins computed by the la method may

be decreased by including the wavelet filtering into the

process.

Aircraft Models and Uncertainties

Robust stability margins for the ASE dynamics of the

F-18 HARV are computed using the [.t method with

wavelet filtering. Stability margins are computed for the

antisymmetric modes (table I) of the lateral-directional

ASE dynamics for the aircraft at Mach 0.3 and an altitude

of 30,000 ft (7=/= 41 lb/ft 2) at 50 ° angle of attack. A

baseline implementation of the I.t method indicates these

margins may lie within the flight envelope, so any

reduction in conservatism could be significant at this

flight condition. (i5)

An uncertainty description is formulated using three

operators to describe errors in an F-18 HARV analytical

model. A complex operator, A/n, is a multiplicative

uncertainty in the control inputs to the plant and accounts

for actuator errors and unmodeled dynamics. Another

complex operator, Aadd, relates the control inputs to the

feedback measurements to account for uncertainty in the

magnitude and phase of the computed plant responses.

The remaining uncertainty operator, A A, is a real
parametric uncertainty affecting the modal parameters of

the open-loop state matrix to describe errors in natural

frequency and damping parameters.

Figure 10 shows the block diagram for robust stability

analysis of the F-18 HARV ASE dynamics. This figure

includes an operator, _Srt, that affects the nominal
dynamics to describe changes in flight condition and is

used to interpret la as a stability margin. (l l) Additional

operators, Wadd and W/n, are shown as weightings to

normalize the frequency-varying uncertainty operators,

Aadd and Ain. The system model also contains 2-percent

sensor noise corruption on each measurement.

The lateral-directional controller, K, has 29 states.

Table 2 shows the feedback measurements and control

inputs associated with this controller.
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Figure 10. F-18 HARV uncertainty block diagram for

robust stability margin analysis.

Baseline Model Validation

A model with an associated uncertainty description

was generated to compute robust stability margins by the

H method. The plant model, P0, is the nominal model
generated by a finite-element analysis of the ASE

dynamics. The parameters in this model are theoretical

and have not been updated by analysis of flight data. The

model contains seven antisymmetric elastic structural
modes between 5 and 20 Hz (tablel).

Table 2. Feedback measurements and control commands

for the thrust vectoring lateral-directional controller K.

Feedback Measurements Control Commands

Aileron

Differential leading edge flap

Differential trailing edge flap

Differential stabilator

Rudder

Yaw thrust vectoring

Roll rate

Yaw rate

Sideslip rate

Lateral acceleration

An uncertainty description, A0 , is generated using the
model validation procedure on a frequency-domain

representation of the unfiltered data. Only the observed
energies from frequencies less than 20 Hz are used for

validation because considerable energy exists at
frequencies of approximately 20 Hz caused by structural

dynamics associated with the thrust-vectoring vane

system that is difficult to model. The primary transfer

function used in the derivation of the uncertainty

description is the lateral acceleration response from yaw

thrust vectoring. These data responses demonstrate good

observability of the primary modes to a maximum 20 Hz.

Separate parametric uncertainty levels are chosen for

each mode of the open-loop state matrix to reflect

different levels of accuracy. These uncertainty

magnitudes are computed to describe observed variations

between the model transfer function and the flight data
measurements. Table 3 shows the nominal modal

parameters and the amount of variation admitted by the

parametric uncertainty.

Table 3. Modal parameters and uncertainty variations for

model Po and A 0 .

Mode 03, Hz

Fuselage first bending

Wing first bending

Wing first torsion

Wing fore-aft

Fuselage first torsion

6.85+__0.07 0.012+_0.006

8.96 +_.0.18 0.006 +_.0.004

12.84 +_0.13 0.011 +_0.006

15.69 ± 0.63 0.010 +_0.007

18.86 ± 0.76 0.010 _+0.005

The amount of variation needed to describe modal

parameter errors is fairly significant for all modes,

especially in damping ratio. The fuselage first torsion and

wing fore-aft modes have properties that are particularly

poorly modeled, so as much as 4-percent error exists in

natural frequency and 70-percent error in damping. The

remaining modes have only 2-percent error in natural

frequency but still require at least 50-percent error in

damping.

The weighting functions for the input multiplicative

and additive uncertainties are chosen to account for any

errors between the model and the flight data that cannot

be covered by the parametric modal uncertainty.

s+100
Win = 10--s + 5000

Wad d = 0.02

Model Validation with Parameter Estimation

The parametric modal estimation procedure was used

to process the flight data and compute modal parameters

for an analytical model. This procedure uses equation 2

to generate estimates of the modal parameters from the

unfiltered wavelet map X(z, co) and associated

properties.
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A plant model, Pl, is computed that is the estimated

plant model obtained from the wavelet filtering. This

model is formulated initially as the nominal plant P0, but

certain theoretical modal parameters are replaced by
their estimated values. Table 4 shows the nominal values

of these parameters. The natural frequencies are not

changed by more than 1 Hz for any of the estimated
modes; however, the estimated damping parameters are

significantly higher than the theoretical values.

Table 4. Modal parameters and uncertainty variations for

model Pl and A t .

Mode co, Hz

Fuselage first bending

Wing first bending

Wing first torsion

Wing fore-aft

Fuselage first torsion

6.85 _ 0.07 0.012 ± 0.006

8.60±0.10 0.040±0.021

13.31 ±0.15 0.045±0.024

16.51 _ 0.35 0.045 _ 0.023

18.21 ___0.37 0.030 _ 0.010

An uncertainty description, A t , is associated with P1

to describe the levels of modeling error in this estimated

plant. The magnitudes of the parametric modal

uncertainty in A 1 are chosen by comparing flight data
with theoretical transfer functions for P1. Table 4 shows

the ranges of modal parameter variations admitted by this

uncertainty.

The variations in natural frequency and dampings are

seen to be considerably reduced for F(P I, A 1) (table 4)

compared to the large variations for F(P 0, A 0) (table 3).

The estimated modal parameters used in P1 are much

closer to those of the aircraft, so the predicted response of

PI closely matches the flight data measurements. Thus,

the natural frequency errors are all less than 2 percent,

and the damping errors are all less than 55 percent.

The weightings, Wadd and W/n, affecting the remaining

uncertainties in A 1 are identical to those of A0 .

Model Validation with Wavelet Filtering and Parameter

Estimation

Modal parameters for model estimate fi2 are extracted

from the time-frequency-domain representation of the
wavelet-filtered flight data _('c, co). Figure 9 shows this

procedure. As shown in table 5, the modal estimates from
the filtered data are similar to the unfiltered estimates

shown in table 4. Parameter variations resulting from
validated model F(P 2, ,_2), however, are reduced in

modal frequency to 1 percent and in modal damping to

10 percent.

Table 5. Modal parameters and uncertainty variations for

model P2 and A2 .

Mode co, Hz

Fuselage first bending

Wing first bending

Wing first torsion

Wing fore-aft

Fuselage first torsion

6.85 _+0.07 0.012 _ 0.001

8.70 ± 0.09 0.035 _ 0.003

13.31 __.0.14 0.045 ±0.004

16.61 +__0.17 0.045 ± 0.004

18.21 ±0.18 0.040±0.004

Aeroservoelastic Stability Margins

Nominal stability margins are computed for the plant

model using the original theoretical modal parameters

and for the updated models using parameters estimated

from wavelet filtering• These margins are computed from

a la analysis with respect to the variation in dynamic

pressure, ?/, but ignoring the modal and complex

uncertainty operators. The nominal stability margins, F

(table 6), demonstrate the largest decrease relative to the
nominal dynamic pressure of ?:/ = 41 lb/ft 2 that may be

considered before the models incur an ASE instability.

Therefore, a larger negative value of stability margin
indicates a greater margin of robust stability than a value
closer to zero does.

Table 6. Nominal stability margins for models.

Model F co

F(P o, 0) -268 lb/ft 2 14.8 Hz

F(P 1, 0) -368 ib/ft 2 14.8 Hz

F(P 2, 0) -379 lb/ft 2 14.8 Hz

The original theoretical model has a nominal stability
margin of F =-268 lb/ft 2 resulting from a critical

instability of the wing fore-aft mode at 14.8 Hz. The

margins are increased by updating the models with

modal parameters estimates; however, the wing fore-aft

mode remains the critical mode for these updated

models. This increase in stability margin associated with
wavelet filtering is not guaranteed to occur for all

applications; rather, the filtering is designed to increase

nominal model accuracy. The nominal model for the

F-18 HARV has excessively low damping values

10
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compared to the damping levels resulting from the
wavelet filtering. Increasing damping ratio estimates

make the plant effectively more stable and increase the

stability margins.

These nominal margins are all greater in absolute value

than the nominal dynamic pressure, thus demonstrating

the nearest instability to the flight envelope occurs at a

negative dynamic pressure, which is physically
unrealizable. Therefore, the nominal dynamics are free of

ASE instabilities within the research flight envelope.

Robust stability margins are computed with respect to

the uncertainty description (fig. 10) (table 7). Model

F(P o, A0) describes the original model with parameter
variations (table 3). The model with modal parameter

estimates, F(P I, A l), has the reduced uncertainty levels
leading to the variations shown in table 4. The remaining

model, F(P 2, A2), describes the model formulated by
combining wavelet filtering with parameter estimation

and introducing uncertainty to allow the variations
shown in table 5.

Table 7. Robust stability margins for models

with respect to uncertainty descriptions.

Model 1" to

F(P0, AO) --4 lb/ft 2 5.4 Hz

F(P l, A 1) -222 Ib/ft 2 7.0 Hz

F(P2, A2) -239 lb/ft 2 7.0 Hz

The stability margin of the original model is strongly

affected by considering uncertainty. This margin is
reduced from F = -268 lb/ft 2 for the nominal dynamics

to F =-4 Ib/ft 2 for the dynamics with respect to

uncertainty. The critical mode remains the wing fore-aft

mode despite the uncertainty; however, the dynamic

pressure at which this mode becomes unstable is quite

different. This robust stability margin demonstrates the

nominal model may be misleading and the nearest

unstable flight condition may actually lie within the flight

envelope.

The robust stability margin for the model F(P 1, AI),
using modal parameter estimates, is significantly larger

than the margin of the original system. The wavelet

processing is able to identify a more accurate model with

less associated uncertainty, so the conservatism in the

margin is reduced. The robust stability margin for this
model is F =-222 lb/ft 2 and indicates the nearest

instability for the updated model. Despite the range of

dynamics incurred by uncertainty, the margin is at a

negative dynamic pressure, and so the flight envelope is
free of ASE instabilities.

The critical mode associated with the robust stability

margin for the updated model is the fuselage first bending
mode. This mode differs from the critical wing fore-aft

mode associated with the nominal margin. This shift in

critical mode is a result of modal parameter updates and

corresponding reduced uncertainty sets.

The model formulated from parameter estimation

coupled with wavelet filtering, F(P 2, A2), has a robust
stability margin similar to the margin of F(P l, A l ). The

magnitude of this margin is slightly higher as a result of

the reduced uncertainty levels needed to validate the

filtered flight data; however, the critical mode remains

the fuselage first bending mode.

Reduction in parameter variations from nonparametric

wavelet filtering did not have as much an effect on

robust stability as the updated parameter estimates.

Nonparametric filtering has more impact on parameter

variance, which was a less significant factor than

parameter bias.

To summarize, comparison between the nominal

results (table 6) and the robust margins (table 7) shows

that the decrease in margin from uncertainty is clearly

evident. The decrease is most substantial for plant model

P0, which has the greatest amount of modal uncertainty

in A0, yet the frequency of instability is consistent with
the nominal cases. When updated modal parameter

estimates are incorporated in Pj and P2, the decrease in

margins are less than the nominal models because of the

smaller uncertainty sets (A l, A2) compared to A 0 .

The main difference between nominal and robust

results is in modal frequency of instability. Wing fore-aft

modal frequency increased approximately I Hz from its

theoretical value to the updated value, and thereby

became a less significant factor in the stability margin

calculation compared with fuselage first bending. This

result confirms that the effect of parameter estimation,

and essentially data quality, in model validation becomes
a critical factor in robust stability boundary prediction.

On-Line Implementation

Analysis of flight data in an on-line environment
requires interactive capabilities. In reference to the

flowchart shown in figure 9, the data stream is first

wavelet-processed to provide information to the model

validation step. Wavelet processing will require

resolution criteria, filtering options, and a methodology

for extracting dominant dynamics (fig. 7). A robust
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stabilitymarginis thencalculatedbasedonthemodel
validationtest.Modalparameterscanbeincorporated
intoa modelupdate,anduncertaintydescriptionsare
modifiedaccordingly.Finally,anupdatedmodelP(s)is
createdto closetheloopuntilthenextdatastreamis
processed.A paralleleffortof waveletprocessingof
futuredatawhilemodelupdatingfrompastdatais
thereforepossible.

Modelupdatesneedtobeperformedinthecontextof
the test scenario,flight conditions,and stability
criteria.(9)Modalparametersfromrecent(local)testscan
beusedif stabilitypredictionis basedonaparticular
sequenceof adjacenttestconditions.Thisapproach
attemptstominimizeconservatismforaparticulararea
of theflightenvelopeor a particularflight regime.
Alternatively, model uncertainty may be continuously

increased in a worst-case approach to assure that all

nominal models with the associated uncertainty

description are not invalidated by any of the data sets. In

this case, a single global uncertainty model is generated

for conservative measures. A hybrid approach would

segment areas of the flight envelope for a combination of

local analyses in which each would have some flight
condition commonality.

Computation requirements are reasonable. A

200-MHz computer is able to wavelet-process I min of

100-Hz data for one input-output pair of channels and

five (octave) wavelet resolution levels in 3-5 min of

central processing unit time. This amount is comparable

to the time needed to compute the model validation and

It step in a worst-case analysis for flutter prediction, (25)

and the It step does not depend on the data access

parameters. Hence, a parallel computation is feasible

within 3-5 min. However, with a recently developed
real-time wavelet processor, (26) the entire on-line

wavelet-It process can be computed serially within a
worst-case 3-min time window.

Conclusion

Improvements in aeroservoelastic flight data analysis

and stability prediction estimation have been presented.

Wavelet approaches to system identification have been

applied by combining filtering and parametric

time-frequency identification algorithms with Morlet
wavelets. The combination of these estimation schemes

extracted modal estimates and system uncertainty

representations for less conservative model validation.

Uncertainty ranges validated by F-18 High Alpha
Research Vehicle aeroservoelastic data were shown to

decrease by incorporating modal estimates based on the

wavelet-processed data.

With the model parameter and uncertainty description

updates, the critical aeroservoelastic instability changed

in modal frequency and flight condition. A predicted

instability within the flight envelope using an uncertain
baseline model was found to be too conservative. Model

updates pushed the instability beyond the flight regime.

The ultimate objective of predicting stability boundaries

from flight data was enhanced by a reduction in

conservatism of the stability margin estimates. On-line

implementation issues and computation time were

presented to demonstrate feasibility in an actual flight
test situation.

APPENDIX

Given a general harmonic signal,

x(t) = k(t)cos(O(t)t),

the wavelet transform (WT) ofx(t) is

W(a, _) = .,Itak(t)e-(a_(t)-c°°)2ei_(t)_.

For fixed dilation parameter a i (equivalently fixed

frequency co), the modulus and phase of the WT of x(t)
are

r.- . -(ai_(t)- O_o)2

[W(ai, z)] = _aik(t)e

zlw(  , = (2)

Instantaneous frequency of a signal in this case can be
expressed as (23)

1 dt(z[W(ai ' x)])._(t) - 2n (3)

This expression shows that a general time-varying

envelope k(t) or phase _(t) of the signal can be

determined from the modulus and phase of the WT for
each fixed wavelet frequency.

Specifically, from the impulse response of a

single-degree-of-freedom viscous damper

x(t) = Ae cos(c0dt + %),

substitution of the WT expressions from equation 2

gives

k(t) = IW(ai ' +)l = Ae -;°_.t
_i -(ai_(t) - 0_o) 2

e

?p(t)t = ZrW(ai't. "c)_.j= O_dt + %.
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For a constant wavelet frequency line corresponding to

a i over time x in the (a, "_)plane, estimation of the WT

linear phase variation (or mean value of the instantaneous

frequency over time, shown in equation 3) gives

¢(t) - o_d, and the envelope decay rate is _o_n . Natural

frequency o_n and modal damping ratio _ are therefore

derived. The WT becomes a complex representation of

the original real signal from which the signal eigenvalues

are computed without any approximation of their range.

Multiple-degree-of-freedom systems are analyzed

similarly by noting that the dilated Morlet wavelet is a

band-pass filter (eq. 1). With sufficient resolution of
(%

= b can be
dilation ai, damped modal frequencies O3di ai
discriminated. To recapitulate, the decay rate of the

envelope of each mode is calculated from the log-slope of

the wavelet modulus decay, and damped modal

frequency is estimated as the linear phase variation of the

WT as a function of time. Adequate frequency resolution

can be enforced with the multiscaled compact harmonic

Morlet wavelets
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